
Type Checking

EasyExamNotes.com Type Checking

Introduction

The compiler must perform static checking (checking done at compiler time).This ensures
that certain types of programming errors will be detected and reported.

A compiler must check that the source program follows both the syntactic and semantic
conversions of the source language. This checking is called static checking example of static
checks include.

Some example of static checks:

Typechecks:

A compiler should report an error if an operator is applied to an incompatible operand.

Flow-of-control checks:

Statements that cause flow of control to leave a construct must have some place to which to
transfer flow of control.

For example, branching to non-existent labels.

Uniquenesschecks:

Objects should be defined only once. This is true in many languages.

Name-related checks:

Sometimes, the same name must appear two or more times.



Type Checking

EasyExamNotes.com Type Checking

For example, in Ada the name of a block must appear both at the beginning of the block and
at the end.

Type System:

The type analysis and type checking is an important activity done in the semantic analysis
phase.

The need for type checking is

To detect the errors arising in the expression due to incompatible operand.
To generate intermediate code for expressions andstatements. Typically language
supports two types of data types- basic and constructed.

The basic data type are- integer, character, and real, Boolean, enumerated data type. And
Arrays, record (structure),set and pointer are the constructed types. The constructed data
types are build using basic data types.

Position of Type checkingType Expression

Type of a language construct is either a basic type or is formed by applying an
operator.
A type system is a collection of rules for assigning type expression to the various parts
of a program.

https://i0.wp.com/4.bp.blogspot.com/-fL1VMFDxXXI/WDxAsfoQndI/AAAAAAAACb0/kYn6ag30LJgLicmlbqvY9w82tandt-6wwCLcB/s1600/TYPE.png?ssl=1


Type Checking

EasyExamNotes.com Type Checking

A type checker implements a type system.
Different type system may be used by different compilers or processors of the system
Language.
Checking done by a compiler is said to be static checking of types, while checking
done when the target program runs is terminal dynamic checking of types.
A source type system eliminates the need for dynamic checking for type errors
because it allows us to determine statically that these errors cannot occur when the
target program runs.
Type checking should have a property of error recovery.

Related Posts:
Introduction to Compiler1.
Analysis and synthesis model of compilation2.
Bootstrapping and Porting3.
Lexical Analyzer: Input Buffering4.
Storage Allocation Strategies5.
Specification & Recognition of Tokens6.
Front end and back end of the compiler7.
LEX8.
Analysis synthesis model of compilation9.
Data structure in CD10.
Register allocation and assignment11.
Loops in flow graphs12.
Dead code elimination13.
Syntax analysis CFGs14.
L-attribute definition15.
Operator precedence parsing16.

https://easyexamnotes.com/introduction-to-compiler/
https://easyexamnotes.com/analysis-and-synthesis-model-of/
https://easyexamnotes.com/bootstrapping-n-po/
https://easyexamnotes.com/input-buffering/
https://easyexamnotes.com/storage-allocation-strategies/
https://easyexamnotes.com/specification-recognition-of-tokens_4/
https://easyexamnotes.com/front-end-and-back-end-of-compiler/
https://easyexamnotes.com/lex/
https://easyexamnotes.com/analysis-synthesis/
https://easyexamnotes.com/data-structure-in-cd/
https://easyexamnotes.com/register-allocation-and-assignment/
https://easyexamnotes.com/loops-in-flow-graphs/
https://easyexamnotes.com/dead-code-elimination/
https://easyexamnotes.com/cfgs_61/
https://easyexamnotes.com/l-attribute-definition/
https://easyexamnotes.com/operator-precedence-parsing/


Type Checking

EasyExamNotes.com Type Checking

Analysis of syntax directed definition17.
Recursive descent parser18.
Function and operator overloading19.
Storage allocation strategies20.
Equivalence of expression in type checking21.
Storage organization22.
Parameter passing23.
Run time environment24.
Type checking25.
Code generation issue in design of code generator26.
Boolean expression27.
Declaration and assignment in intermediate code generation28.
Code optimization29.
Sources of optimization of basic blocks30.
Loop optimization31.
Global data flow analysis32.
Data flow analysis of structure flow graph (SFG)33.

https://easyexamnotes.com/analysis-of-syntax-directed-definition/
https://easyexamnotes.com/recursive-descent-parser/
https://easyexamnotes.com/function-and-operator-overloading/
https://easyexamnotes.com/storage-allocation-strategies-2/
https://easyexamnotes.com/equivalence-of-expression-in-type-checking/
https://easyexamnotes.com/storage-organization/
https://easyexamnotes.com/parameter-passing/
https://easyexamnotes.com/run-time-environment/
https://easyexamnotes.com/type-checking-3/
https://easyexamnotes.com/code-generation-issue-in-design-of-code-generator/
https://easyexamnotes.com/boolean-expression/
https://easyexamnotes.com/declaration-and-assignment-in-intermediate-code-generation/
https://easyexamnotes.com/code-optimization/
https://easyexamnotes.com/sources-of-optimization-of-basic-blocks/
https://easyexamnotes.com/loop-optimization/
https://easyexamnotes.com/global-data-flow-analysis/
https://easyexamnotes.com/data-flow-analysis-of-structure-flow-graph/

