RGPV 2010, 02
Q. Write short note on equivalent of DFA and NDFA ?

Ans.

1. Every DFA is an NDFA.
2. If from a regular set an NDFA is created than there may be chances of existence of DFA.

DFA is 5 tuple machine:
$M=(Q, \Sigma, \delta, q 0, F)$

1. Q is a finite non empty set of states.
2. Σ is a finite non empty set of input symbols.
3. δ is a transition function, QX Σ int to Q
4. $q 0$ is an initial state belong to Q .
5. F is the set of final states belong to Q .

NDFA is 5 tuple machine:
$\mathrm{M}=(\mathrm{Q}, \Sigma, \delta, q 0, F)$

1. Q is a finite non empty set of states.
2. Σ is a finite non empty set of input symbols.
3. δ is a transition function, QXE int to 2^{Q}
4. q 0 is an initial state belong to Q .
5. F is the set of final states belong to Q .

Problem 01: Convert the following Non-Deterministic Finite Automata (NDFA) to Deterministic Finite Automata (DFA).

Transition table for NDFA from above NDFA transition diagram

State	Input 0	Input 1
$->q 0$	$q 0$	$q 0, q 1$
$q 1$	-	$* q 2$
q2	-	-

Transition table for DFA from above NDFA transition table

State	Input a	Input b
$->q 0$	$q 0$	$\{q 0, q 1\}$
$\{q 0, q 1\}$	$q 0$	$*\{q 0, q 1, q 2\}$
$*\{q 0, q 1, q 2\}$	$q 0$	$*\{q 0, q 1, q 2\}$

Transition diagram from above DFA transition table

Reference:

RGPV TOC Short note on equivalent of DFA and NFA

1. Introduction to Automata Theory Language \& Computation, Hopcroft\& Ullman,
 2. Theory of Computation, Chandrasekhar \& Mishra, PHI.

Related Posts:

1. RGPV TOC What do you understand by DFA how to represent it
2. RGPV Define Mealy and Moore Machine
3. RGPV notes Write short note on NDFA
4. NDFA accepting two consecutive a's or two consecutive b's.
5. RGPV short note on automata
6. RGPV TOC properties of transition functions
7. RGPV TOC What is Trap state
8. DFA which accept 00 and 11 at the end of a string
9. CFL are not closed under intersection
10. NFA to DFA \| RGPV TOC
11. Moore to Mealy | RGPV TOC PYQ
12. DFA accept even 0 and even 1 |RGPV TOC PYQ
13. Short note on automata | RGPV TOC PYQ
14. DFA ending with 00 start with 0 no epsilon \| RGPV TOC PYQ
15. DFA ending with 101 | RGPV TOC PYQ
16. Construct DFA for a power $n, n>=0| | ~ R G P V ~ T O C ~$
17. Construct FA divisible by 3 | RGPV TOC PYQ
18. Construct DFA equivalent to NFA \| RGPV TOC PYQ
19. CNF from $S->a A D ; A->a B / b A B ; B->b, D->d$.
20. Regular expresion to CFG
21. Regular expression to Regular grammar
22. Grammar is ambiguous. $S \rightarrow a S b S|b S a S| \in$
23. leftmost and rightmost derivations
24. Construct Moore machine for Mealy machine
25. Definition of Deterministic Finite Automata
26. Notations for DFA
27. How do a DFA Process Strings?
28. DFA solved examples
29. Definition Non Deterministic Finite Automata
30. Moore machine
31. Mealy Machine
32. Regular Expression Examples
33. Regular expression
34. Arden's Law
35. NFA with \in-Moves
36. NFA with \in to DFA Indirect Method
37. Define Mealy and Moore Machine
38. What is Trap state ?
39. Equivalent of DFA and NFA
40. Properties of transition functions
41. Mealy to Moore Machine
42. Moore to Mealy machine
43. Diiference between Mealy and Moore machine
44. Pushdown Automata
45. Remove \in transitions from NFA
46. TOC 1
47. Diiference between Mealy and Moore machine
48. What is Regular Expression

RGPV TOC Short note on equivalent of DFA and NFA
49. What is Regular Set in TOC
50. DFA end with 1 contain 00 | RGPV TOC draw
51. RGPV TOC design finite automata problems
52. Minimization of DFA
53. Construct NFA without \in
54. RGPV TOC PYQs
55. Introduction to Automata Theory

