Example 1: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w contains only a's or only b's of length zero or more.

Solution: $r = a^* + b^*$

Example 2: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w is of length one or more and contains only a's or only b's. r = a + b + b + c

Solution: $r = a^+ + b^+$

Example 3: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w contains zero or more a's followed by zero or more b's

Solution: r = a*b*

Example 4: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w of length even

Solution: $r = [(a + b) (a + b)]^*$

Example 5: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w of length odd

Solution: $r = (a + b) [(a + b) (a + b)]^*$

Example 6: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w of length three

Solution: r = (a + b) (a + b) (a + b)

Example 7: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w of length atmost three

Solution: $r = (a + b + \in) (a + b + \in) (a + b + \in)$

regular Expression Example	Regul	ar Ex	pression	Examp	les
----------------------------	-------	-------	----------	-------	-----

Example 8: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w of length odd containing only b's

Solution: r = (bb)*b

Example 9: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w starting with a always

Solution: $r = a(a + b)^*$

Example 10: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w starting and ending with b and having only a's in between.

Solution: r = b a*b

Example 11: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings

w such that, w starting and ending with same double letter

Solution: $r = \{(aa (a + b)* aa) | (bb (a + b)* bb)\}$

Example 12: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w with starting and ending with different letters

Solution: r = (a(a+b)*b) | (b (a + b)*a)

Example 13: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w with at least two occurrence of a

Solution: $r = (a + b)^* a (a + b)^* a (a + b)^*$

Example 14: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w with exactly two occurrence of a

Solution: $r = b^* a b^* a b^*$

Example 15: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w with at most two occurrence of a

Solution:
$$r = b^* (a + \in) b^* (a + \in) b^*$$

Example 16: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w with begin or end with aa or bb

Solution:
$$r = ((aa + bb) (a + b)^*) + ((a + b)^* (aa + bb))$$

Example 17: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w with begin and end with aa or bb

Solution:
$$r = ((aa + bb) (a + b)* (aa + bb)) + aa + bb$$

Example 18: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings

w such that, w with total length multiple of 3 always

Solution: $r = [(a + b) (a + b) (a + b)]^*$

Example 19: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w containing total a's as multiple of 3 always

Solution: $r = [b^* a b^* a b^* a b^*]^*$

Example 20: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w with exactly two or three b's

Solution: $r = a^* b a^* b a^* (b + \in) a^*$

Example 21: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w with number of a's even

Solution: $r = b^* + (b^* a b^* a b^*)^*$

Regul	ar F	xpressi	on F	xamr	oles
ncgui	uı L	γρι σοσι		.naiiip	ncs

Example 22: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w in which b is always tripled

Solution: $r = (a + bbb)^*$

Example 23: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w with at least one occurrence of substring aa or bb

Solution: $r = (a + b)^* (aa + bb) (a + b)^*$

Example 24: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w with at the most one occurrence of sub-string bb

Solution: $r = (a + ba)^* (bb + \in) (a + ab)^*$

Example 25: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings

w such that, w without sub-string ab

Solution: $r = b^* a^*$

Example 26: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w without sub-string aba

Solution: $r = (a + \in) (b + aa +)^* (a + \in)$

Example 27: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w in which 3rd character from right end is always a

Solution: $r = (a + b)^* a (a + b) (a + b)$

Example 28: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w always start with 'a' and the strings in which each 'b' is preceded by 'a'.

Solution: $(a + ab)^*$

Example 29: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w contains atleast one 'a'.

Solution: (a + b)* a (a + b)*

Example 30: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w contain atleast two 'a's or any number of 'b's.

Solution: (a* a b* a b*) + b*

Example 31: Let $\Sigma = \{a, b\}$. Write regular expression to define language consisting of strings w such that, w contain atleast one 'a' followed by any number of 'b's followed by atleast one 'c'.

Solution: a⁺ b* c⁺

Related Posts:

- 1. Definition of Deterministic Finite Automata
- 2. Notations for DFA
- 3. How do a DFA Process Strings?
- 4. DFA solved examples
- 5. Definition Non Deterministic Finite Automata
- 6. Moore machine
- 7. Mealy Machine
- 8. Regular expression
- 9. Arden's Law
- 10. NFA with ∈-Moves
- 11. NFA with ∈ to DFA Indirect Method
- 12. Define Mealy and Moore Machine
- 13. What is Trap state?
- 14. Equivalent of DFA and NFA
- 15. Properties of transition functions
- 16. Mealy to Moore Machine
- 17. Moore to Mealy machine
- 18. Diiference between Mealy and Moore machine
- 19. Pushdown Automata
- 20. Remove ∈ transitions from NFA
- 21. TOC 1
- 22. Diiference between Mealy and Moore machine

- 23. RGPV TOC What do you understand by DFA how to represent it
- 24. What is Regular Expression
- 25. What is Regular Set in TOC
- 26. RGPV short note on automata
- 27. RGPV TOC properties of transition functions
- 28. RGPV TOC What is Trap state
- 29. DFA which accept 00 and 11 at the end of a string
- 30. CFL are not closed under intersection
- 31. NFA to DFA | RGPV TOC
- 32. Moore to Mealy | RGPV TOC PYQ
- 33. DFA accept even 0 and even 1 |RGPV TOC PYQ
- 34. Short note on automata | RGPV TOC PYQ
- 35. DFA ending with 00 start with 0 no epsilon | RGPV TOC PYQ
- 36. DFA ending with 101 | RGPV TOC PYQ
- 37. Construct DFA for a power n, n>=0 || RGPV TOC
- 38. Construct FA divisible by 3 | RGPV TOC PYQ
- 39. Construct DFA equivalent to NFA | RGPV TOC PYQ
- 40. RGPV Define Mealy and Moore Machine
- 41. RGPV TOC Short note on equivalent of DFA and NFA
- 42. RGPV notes Write short note on NDFA
- 43. Minimization of DFA
- 44. Construct NFA without ∈
- 45. CNF from S->aAD;A->aB/bAB;B->b,D->d.
- 46. NDFA accepting two consecutive a's or two consecutive b's.
- 47. Regular expresion to CFG
- 48. Regular expression to Regular grammar
- 49. Grammar is ambiguous. S → aSbS|bSaS|€

- 50. leftmost and rightmost derivations
- 51. Construct Moore machine for Mealy machine
- 52. RGPV TOC PYQs
- 53. Introduction to Automata Theory
- 54. Design a NFA that accepts the language over the alphabet, $\Sigma = \{0, 1, 2\}$ where the decimal equivalent of the language is divisible by 3.