Issues in the design of code generator

CODE GENERATION ISSUES IN THE DESIGN OF CODE GENERATOR
Code generation can be considered as the final phase of compilation. Through post code generation, optimization process can be applied on the code, but that can be seen as a part of code generation phase itself. The code generated by the compiler is an object code of some lower-level programming language,
For example, assembly language. We have seen that the source code written in a higher-level language is transformed into a lower-level language that results in a lower-level object code, which should have the following minimum properties:
·         It should carry the exact meaning of the source code.
·         It should be efficient in terms of CPU usage and memory management.

We will now see how the intermediate code is transformed into target object code.                           
 DESIGN OF CODE GENERATOR
DEFINITION
THE TARGET PROGRAM – The output of code generator is target program.
MEMORY MANAGEMENT – Mapping names in the source program to addresses of data objects in Design done by run time memory is front end & code generator
A code generator is expected to have an understanding of the target machine’s runtime environment and its instruction set.
The code generator should take the following things into consideration to generate the code:

1) TARGET LANGUAGE
The code generator has to be aware of the nature of the target language for which the code is to be transformed. That language may facilitate some machine-specific instructions to help the compiler generate the code in a more convenient way. The target machine can have either CISC or RISC processor architecture.

2) IR TYPE
Syntax Tree    (AST) Intermediate representation has various forms. It can be in Abstract  structure, Reverse Polish Notation, or 3-address code.

3) SELECTION OF INSTRUCTION
The code generator takes Intermediate Representation as input and converts (maps) it into target machine’s instruction set. One representation can have many ways (instructions) to convert it, so it becomes the responsibility of the code generator to choose the appropriate instructions wisely.

4) REGISTER ALLOCATION
A program has a number of values to be maintained during the execution. The target machine’s architecture may not allow all of the values to be kept in the CPU memory or registers. Code generator decides what values to keep in the registers. Also, it decides the registers to be used to keep these values.

5) ORDERING OF INSTRUCTIONS
Python Programming ↓ 👆
Java Programming ↓ 👆
JAVA EasyExamNotes.com covered following topics in these notes.
JAVA Programs
Principles of Programming Languages ↓ 👆
Principles of Programming Languages
EasyExamNotes.com covered following topics in these notes.

Practicals:
Previous years solved papers:
A list of Video lectures References:
  1. Sebesta,”Concept of programming Language”, Pearson Edu 
  2. Louden, “Programming Languages: Principles & Practices” , Cengage Learning 
  3. Tucker, “Programming Languages: Principles and paradigms “, Tata McGraw –Hill. 
  4. E Horowitz, "Programming Languages", 2nd Edition, Addison Wesley

    Computer Organization and Architecture ↓ 👆

    Computer Organization and Architecture 

    EasyExamNotes.com covered following topics in these notes.

    1. Structure of desktop computers
    2. Logic gates
    3. Register organization
    4. Bus structure
    5. Addressing modes
    6. Register transfer language
    7. Direct mapping numericals
    8. Register in Assembly Language Programming
    9. Arrays in Assembly Language Programming

    References:

    1. William stalling ,“Computer Architecture and Organization” PHI
    2. Morris Mano , “Computer System Organization ”PHI

    Computer Network ↓ 👆
    Computer Network

    EasyExamNotes.com covered following topics in these notes.
    1. Data Link Layer
    2. Framing
    3. Byte count framing method
    4. Flag bytes with byte stuffing framing method
    5. Flag bits with bit stuffing framing method
    6. Physical layer coding violations framing method
    7. Error control in data link layer
    8. Stop and Wait scheme
    9. Sliding Window Protocol
    10. One bit sliding window protocol
    11. A protocol Using Go-Back-N
    12. Selective repeat protocol
    13. Application layer
    References:
    1. Andrew S. Tanenbaum, David J. Wetherall, “Computer Networks” Pearson Education.
    2. Douglas E Comer, “Internetworking with TCP/IP Principles, Protocols, And Architecture",Pearson Education
    3. KavehPahlavan, Prashant Krishnamurthy, “Networking Fundamentals”, Wiley Publication.
    4. Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, “Computer Networks: An Open Source Approach”, McGraw Hill.