
Introduction to Compiler

EasyExamNotes.com Introduction to Compiler

DEFINITION:
A compiler is a software tool that translates high-level programming code into a lower-level
representation that can be executed by a computer.

PURPOSE:
The primary function of a compiler is to convert source code written in a high-level language
(such as C, C++, Java) into machine code or assembly language, which can be understood
and executed by the computer’s processor.

COMPILATION PROCESS:
The compilation process consists of two main phases:

Analysis phase1.
Synthesis phase2.

1. Analysis Phase:

This phase involves breaking down the source code, verifying its correctness, and
understanding its structure and meaning.

Lexical analysis: Breaking the code into individual tokens (keywords, identifiers,1.
operators, literals) and removing unnecessary elements like white spaces and
comments.
Syntax analysis: Verifying the code’s syntax by checking the arrangement of tokens2.

https://easyexamnotes.com/what-are-high-level-programming-languages/


Introduction to Compiler

EasyExamNotes.com Introduction to Compiler

according to the language’s grammar rules and building a parse tree or abstract
syntax tree (AST).
Semantic analysis: Checking the code’s meaning and context, including type checking3.
and symbol table construction.

2. Synthesis Phase:

This phase focuses on generating the target code from the analyzed source code.

Intermediate code generation: Creating an intermediate representation of the source1.
code, often platform-independent and more optimized.
Optimization: Applying various techniques to improve the efficiency and performance2.
of the intermediate code.
Code generation: Generating the final target code, either machine code specific to the3.
target hardware or assembly language resembling the machine code.

OUTPUT:
Once the compilation process is complete, the compiler produces an executable or binary file
that can be directly executed by the computer.

BENEFITS:
Compilers enable programmers to write code in higher-level languages, abstracting the
complexities of the underlying hardware. They also allow for efficient and portable software
development.


