Group

A non-empty set G of some elements (a, b, c, etc.), with one or more operations is known as a group.

A set needed to be satisfied following properties to become a group:

1) Closure Property: a.b \in G , \forall a, b \in G

2) Associative Property: (a . b) . c = a . (b . c), \forall a, b, c \in G

3) Existence of Identity: $e \rightarrow identity element$ $e.a = a = a.e, \forall a \in G$

4) Existence of Inverse: a-1→ inverse of a a.a-1 = e = a-1.a , \forall a ∈ G

Abelian or Commutative Group

A set needed to be satisfied following properties to become an abelian group:

1) Closure Property: a.b \in G , \forall a, b \in G 2) Associative Property: (a . b) . c = a . (b . c), \forall a, b, c \in G

3) Existence of Identity: e → identity element e.a = a = a.e, \forall a ∈ G

4) Existence of Inverse: a-1 → inverse of a a.a-1 = e = a-1.a , \forall a ∈ G

5) Commutativity: a.b = b.a , \forall a , b \in G

Subgroup

A subgroup is a subset H of group elements of a group G that satisfies all the four properties of a group.

" H is a subgroup of G" can be written as $\mathsf{H} \subseteq \mathsf{G}$

A subgroup H of a group G, where $H \neq G$, is known as proper subgroup of G.