
Equivalence of expression in type checking

EasyExamNotes.com Equivalence of expression in type checking

In programming languages, type checking is the process of verifying the compatibility of data
types used in expressions. When comparing expressions for equivalence, type checking
ensures that the types of operands on both sides of the comparison operator are compatible.
The equivalence of expressions is determined based on the type rules specified by the
language.

Here’s an explanation of how equivalence of expressions is checked through type checking:

1. Basic Types:

In many programming languages, basic types such as integers, floating-point numbers,
characters, and booleans are compared for equivalence using the appropriate
comparison operators (e.g., == for equality).
Type checking ensures that the operands on both sides of the comparison operator are
of the same type or compatible types.
For example, in C, the equivalence of two integers is checked by comparing their
values using the == operator.

2. Object Types:

In languages that support object-oriented programming, equivalence of expressions
involving objects may have different rules based on the language’s type system.
For reference types (objects), equivalence is typically determined by comparing
references to objects rather than their actual contents.
In languages like Java, the == operator checks whether two object references point to
the same memory location (i.e., whether they refer to the same object).
For content-based equivalence, such as comparing the values of two objects, the
equals() method is often used.



Equivalence of expression in type checking

EasyExamNotes.com Equivalence of expression in type checking

3. Type Conversion and Promotion:

Type checking also involves implicit or explicit type conversion or promotion to ensure
compatibility when comparing different types.
In some cases, if the types are not directly compatible, the language may attempt to
convert one or both operands to a compatible type before performing the comparison.
For example, in C, when comparing an integer with a floating-point number, the
integer may be promoted to a floating-point type before the comparison.

4. Type Errors:

If the types of operands in an equivalence comparison are incompatible or violate the
language’s type rules, a type error may occur.
Type errors typically result in a compilation error or runtime exception, depending on
when the type checking occurs in the language’s execution model.

Type checker find whether two type expressions are equivalent or not.

This type equivalence is of two categories:

Structural equivalence1.
Name equivalence.2.

In type checking if two type expressions are equal then return a certain type else return type-
error.



Equivalence of expression in type checking

EasyExamNotes.com Equivalence of expression in type checking

1. Structural equivalence:

Replace the named types by their definitions and recursively check the substituted trees. If
type expressions are built from basic types and constructors then those expressions are
called structurally equivalent.

Example:

S1 S2 Equivalence Reason

Char Char S1 equivalent to S2 Similar basic types

Pointer (char) Pointer (char) S1 equivalent to S2 Similar constructor ptr to the char
type

2. Name equivalence :

Two type expressions are name equivalent if and only if they are identical, that is if they can
be represented by the same syntax tree, with the same labels.

Example:

typedef struct Node
{
int x;
} Node;
Node *first,*second;
Struct Node *last1,*last2;



Equivalence of expression in type checking

EasyExamNotes.com Equivalence of expression in type checking

The variables first and second are name equivalent similarly last1 and last2 are name
equivalent.

Related Posts:
Introduction to Compiler1.
Analysis and synthesis model of compilation2.
Bootstrapping and Porting3.
Lexical Analyzer: Input Buffering4.
Storage Allocation Strategies5.
Type Checking6.
Specification & Recognition of Tokens7.
Front end and back end of the compiler8.
LEX9.
Analysis synthesis model of compilation10.
Data structure in CD11.
Register allocation and assignment12.
Loops in flow graphs13.
Dead code elimination14.
Syntax analysis CFGs15.
L-attribute definition16.
Operator precedence parsing17.
Analysis of syntax directed definition18.
Recursive descent parser19.
Function and operator overloading20.
Storage allocation strategies21.
Storage organization22.
Parameter passing23.

https://easyexamnotes.com/introduction-to-compiler/
https://easyexamnotes.com/analysis-and-synthesis-model-of/
https://easyexamnotes.com/bootstrapping-n-po/
https://easyexamnotes.com/input-buffering/
https://easyexamnotes.com/storage-allocation-strategies/
https://easyexamnotes.com/type-checking-2/
https://easyexamnotes.com/specification-recognition-of-tokens_4/
https://easyexamnotes.com/front-end-and-back-end-of-compiler/
https://easyexamnotes.com/lex/
https://easyexamnotes.com/analysis-synthesis/
https://easyexamnotes.com/data-structure-in-cd/
https://easyexamnotes.com/register-allocation-and-assignment/
https://easyexamnotes.com/loops-in-flow-graphs/
https://easyexamnotes.com/dead-code-elimination/
https://easyexamnotes.com/cfgs_61/
https://easyexamnotes.com/l-attribute-definition/
https://easyexamnotes.com/operator-precedence-parsing/
https://easyexamnotes.com/analysis-of-syntax-directed-definition/
https://easyexamnotes.com/recursive-descent-parser/
https://easyexamnotes.com/function-and-operator-overloading/
https://easyexamnotes.com/storage-allocation-strategies-2/
https://easyexamnotes.com/storage-organization/
https://easyexamnotes.com/parameter-passing/


Equivalence of expression in type checking

EasyExamNotes.com Equivalence of expression in type checking

Run time environment24.
Type checking25.
Code generation issue in design of code generator26.
Boolean expression27.
Declaration and assignment in intermediate code generation28.
Code optimization29.
Sources of optimization of basic blocks30.
Loop optimization31.
Global data flow analysis32.
Data flow analysis of structure flow graph (SFG)33.

https://easyexamnotes.com/run-time-environment/
https://easyexamnotes.com/type-checking-3/
https://easyexamnotes.com/code-generation-issue-in-design-of-code-generator/
https://easyexamnotes.com/boolean-expression/
https://easyexamnotes.com/declaration-and-assignment-in-intermediate-code-generation/
https://easyexamnotes.com/code-optimization/
https://easyexamnotes.com/sources-of-optimization-of-basic-blocks/
https://easyexamnotes.com/loop-optimization/
https://easyexamnotes.com/global-data-flow-analysis/
https://easyexamnotes.com/data-flow-analysis-of-structure-flow-graph/

