
Deadlock issues in deadlock detection & resolution

EasyExamNotes.com Deadlock issues in deadlock detection & resolution

Table of Contents

Deadlock

Deadlock is a fundamental problem in distributed systems.
A process may request resources in any order, which may not be known a priori and a
process can request resource while holding others.
If the sequence of the allocations of resources to the processes is not controlled.
A deadlock is a state where a set of processes request resources that are held by other
processes in the set.

Deadlock Detection:
1. Resource Allocation Graph (RAG) Algorithm:

Deadlock detection typically involves constructing a resource allocation graph based
on the current resource allocation and request status.
The RAG algorithm identifies cycles in the graph, indicating the presence of a potential
deadlock.
However, the RAG algorithm suffers from scalability issues in large systems due to the
overhead of maintaining the graph.

Deadlock
Deadlock Detection:

1. Resource Allocation Graph (RAG) Algorithm:
2. Resource-Requesting Algorithms:

Deadlock Resolution:
1. Deadlock Prevention:
2. Deadlock Avoidance:
3. Deadlock Detection with Recovery:



Deadlock issues in deadlock detection & resolution

EasyExamNotes.com Deadlock issues in deadlock detection & resolution

2. Resource-Requesting Algorithms:

Another approach is to periodically check the state of resource requests and
allocations to identify potential deadlocks.
This approach involves tracking the resource allocation state and examining resource
requests to detect circular waits.
However, this method may have high overhead and can only identify deadlocks when
they occur during the detection phase.

Deadlock Resolution:
1. Deadlock Prevention:

Prevention involves ensuring that at least one of the necessary conditions for deadlock
(mutual exclusion, hold and wait, no preemption, circular wait) is not satisfied.
By carefully managing resource allocation and enforcing certain policies, deadlocks
can be avoided altogether.
However, prevention methods can be complex, restrictive, and may limit system
performance or resource utilization.

2. Deadlock Avoidance:

Avoidance involves dynamically analyzing resource requests and allocations to ensure
that the system avoids entering an unsafe state where a deadlock can occur.
Resource allocation is made based on resource requirement forecasts and resource
availability to prevent circular waits.
Avoidance requires a safe state detection algorithm to determine if a resource



Deadlock issues in deadlock detection & resolution

EasyExamNotes.com Deadlock issues in deadlock detection & resolution

allocation will lead to a deadlock.
However, avoidance techniques may suffer from increased overhead and may limit
system responsiveness.

3. Deadlock Detection with Recovery:

Deadlock detection algorithms can be used to periodically check the system’s state for
potential deadlocks.
Once a deadlock is detected, recovery mechanisms can be employed to resolve the
deadlock.
Recovery may involve aborting one or more processes, rolling back their progress, and
reallocating resources to allow the system to continue.
However, recovery mechanisms can be complex and may result in data loss or system
instability.


