
Storage allocation strategies

EasyExamNotes.com Storage allocation strategies

STORAGE ALLOCATION STRATEGIES

Static Allocation: It is for all the data objects at compile time.1.
Stack Allocation: In this a stack is used to manage the run time storage. For example2.
recursive calls make use of this area. 
Heap Allocation: In this a heap is used to manage the dynamic memory allocation.3.

Static Allocation

The size of data objects is known at compile time. 
The names of these objects are bound to storage at compile time only and such an
allocation of data objects is done by static allocation.
The binding of name with the amount of storage allocated do not change at run time.
Hence the name of this allocation is static allocation. 
In this the compiler can determine the amount of storage required by each data object
and therefore it becomes easy for a compiler to find the address of these data in the
activation record. 
At compiler time compiler can fill the address at which the target code can find the
data it operates on. 
FORTRAN uses the static allocation.

Limitation of static allocation

The static allocation can be done only if the size of data object is known at compile
time.\
The data structures cannot be created dynamically. In the sense that, the static
allocation cannot manage the allocation of memory at run time. 
Recursive procedures are not supported by this type of allocation.



Storage allocation strategies

EasyExamNotes.com Storage allocation strategies

Stack Allocation

In this the storage is organized as stack .This stack is also called control stack.
As activation begins the activation records are pushed onto the stack and on
completion of this activation the corresponding activation records can be popped. 
The locals are stored in the each activation record. Hence locals are bound to
corresponding activation record on each fresh activation. 
The data structures can be created dynamically for stack allocation.

Limitation of stack allocation

The memory addressing can be done using pointers an index registers. Hence this type of
allocation is slower than static allocation.
Heap Allocation

If the values of non local variables must be retained even after the activation record
then such a retaining is not possible by stack allocation. This limitation of stack
allocation is because of its Last in First Out nature. For retaining of such local variables
heap allocation strategy is used.
The heap allocation allocates the continuous block of memory when required for
storage of activation records or other data object, this allocated memory can be
deallocated when activation ends. This deallocated space can be further reused by
heap manager. 
The efficient heap management can be done by 
Creating a linked list for the free blocks and when any memory is deallocated that
block of memory is appended in the linked list. 
Allocate the most suitable block o memory from the linked list i.e. use best fit



Storage allocation strategies

EasyExamNotes.com Storage allocation strategies

technique for allocation of block.

Related Posts:
Introduction to Compiler1.
Analysis and synthesis model of compilation2.
Bootstrapping and Porting3.
Lexical Analyzer: Input Buffering4.
Storage Allocation Strategies5.
Type Checking6.
Specification & Recognition of Tokens7.
Front end and back end of the compiler8.
LEX9.
Analysis synthesis model of compilation10.
Data structure in CD11.
Register allocation and assignment12.
Loops in flow graphs13.
Dead code elimination14.
Syntax analysis CFGs15.
L-attribute definition16.
Operator precedence parsing17.
Analysis of syntax directed definition18.
Recursive descent parser19.
Function and operator overloading20.
Equivalence of expression in type checking21.
Storage organization22.
Parameter passing23.

https://easyexamnotes.com/introduction-to-compiler/
https://easyexamnotes.com/analysis-and-synthesis-model-of/
https://easyexamnotes.com/bootstrapping-n-po/
https://easyexamnotes.com/input-buffering/
https://easyexamnotes.com/storage-allocation-strategies/
https://easyexamnotes.com/type-checking-2/
https://easyexamnotes.com/specification-recognition-of-tokens_4/
https://easyexamnotes.com/front-end-and-back-end-of-compiler/
https://easyexamnotes.com/lex/
https://easyexamnotes.com/analysis-synthesis/
https://easyexamnotes.com/data-structure-in-cd/
https://easyexamnotes.com/register-allocation-and-assignment/
https://easyexamnotes.com/loops-in-flow-graphs/
https://easyexamnotes.com/dead-code-elimination/
https://easyexamnotes.com/cfgs_61/
https://easyexamnotes.com/l-attribute-definition/
https://easyexamnotes.com/operator-precedence-parsing/
https://easyexamnotes.com/analysis-of-syntax-directed-definition/
https://easyexamnotes.com/recursive-descent-parser/
https://easyexamnotes.com/function-and-operator-overloading/
https://easyexamnotes.com/equivalence-of-expression-in-type-checking/
https://easyexamnotes.com/storage-organization/
https://easyexamnotes.com/parameter-passing/


Storage allocation strategies

EasyExamNotes.com Storage allocation strategies

Run time environment24.
Type checking25.
Code generation issue in design of code generator26.
Boolean expression27.
Declaration and assignment in intermediate code generation28.
Code optimization29.
Sources of optimization of basic blocks30.
Loop optimization31.
Global data flow analysis32.
Data flow analysis of structure flow graph (SFG)33.

https://easyexamnotes.com/run-time-environment/
https://easyexamnotes.com/type-checking-3/
https://easyexamnotes.com/code-generation-issue-in-design-of-code-generator/
https://easyexamnotes.com/boolean-expression/
https://easyexamnotes.com/declaration-and-assignment-in-intermediate-code-generation/
https://easyexamnotes.com/code-optimization/
https://easyexamnotes.com/sources-of-optimization-of-basic-blocks/
https://easyexamnotes.com/loop-optimization/
https://easyexamnotes.com/global-data-flow-analysis/
https://easyexamnotes.com/data-flow-analysis-of-structure-flow-graph/

