
PPL: Strong Typing

EasyExamNotes.com PPL: Strong Typing

Strong Typing

A strongly-typed programming language is one in which variable type is defined. (such as
integer, character, hexadecimal, packed decimal, and so forth).

If we specify a particular type to our data, the compiler will consider the data as the specified
type and no other type.

An example of arithmetic operation in strongly typed language that will generate an error:
int addition = 10 + “10”;
Here, a string type cannot be added with an integer type.

Strong typed language minimize errors while running the program because most of the errors
will have been corrected before running the program.

Some examples of strongly typed languages are C and Java.

Viva Voce on Strong Typing

Q1. What is strong type language?
Ans. A strongly-typed programming language is one in which each type of data (such as
integer, character, hexadecimal, packed decimal, and so forth) is predefined as part of the
programming language and all constants or variables defined for a given program must be
described with one of the data types.

Q2. Is strong type language predefined part of language?
Ans. Yes.

PPL: Strong Typing

EasyExamNotes.com PPL: Strong Typing

Q3. In Strongly typed language errors are maximize or minimize?
Ans. Minimize.

Q4. In this Strongly typed language are slower / faster ?
Ans. It is faster.

Q5. Write some examples of strong typed language?
Ans. SQL, C , Java.

Q6. A language is strongly typed if there are compile-time or run-time checks for what?
Ans. it check the type constraint violations. If no checking is done, it is weakly typed.

Q7. What is the rule of strong typed language?
Ans. Generally, a strongly typed language has stricter typing rules at compile time, which
implies that errors and exceptions are more likely to happen during compilation.

Q8. A language is strongly typed if the type of its data objects is fixed or not?
Ans. Yes, A language is strongly typed if the type of its data objects is fixed.

Q9. A language is weakly typed if the type of its data objects is changeable or not?
Ans. If the type of a datum can change.

Related Posts:
Sequence Control & Expression | PPL1.
PPL:Named Constants2.
Parse Tree | PPL | Prof. Jayesh Umre3.
Basic elements of Prolog4.
Loops | PPL | Prof. Jayesh Umre5.

https://easyexamnotes.com/ppl-sequence-control-expression/
https://easyexamnotes.com/pplnamed-constants/
https://easyexamnotes.com/parse-tree-ppl-prof-jayesh-umre/
https://easyexamnotes.com/basic-elements-of-prolog-2/
https://easyexamnotes.com/loops-ppl-prof-jayesh-umre/

PPL: Strong Typing

EasyExamNotes.com PPL: Strong Typing

Subprograms Parameter passing methods | PPL | Prof. Jayesh Umre6.
Programming Paradigms | PPL | Prof. Jayesh Umre7.
Subprograms Introduction | PPL | Prof. Jayesh Umre8.
Phases of Compiler | PPL | Prof. Jayesh Umre9.
Parse Tree | PPL10.
Influences on Language design | PPL | Prof. Jayesh Umre11.
Fundamentals of Subprograms | PPL | Prof. Jayesh Umre12.
Programming Paradigm13.
Influences on Language Design14.
Language Evaluation Criteria15.
OOP in C++ | PPL16.
OOP in C# | PPL17.
OOP in Java | PPL18.
PPL: Abstraction & Encapsulation19.
PPL: Semaphores20.
PPL: Introduction to 4GL21.
PPL: Variable Initialization22.
PPL: Conditional Statements23.
PPL: Array24.
PPL: Coroutines25.
PPL: Exception Handler in C++26.
PPL: OOP in PHP27.
PPL: Character Data Type28.
PPL: Exceptions29.
PPL: Heap based storage management30.
PPL: Primitive Data Type31.
PPL: Data types32.

https://easyexamnotes.com/subprograms-parameter-passing-methods-ppl-prof-jayesh-umre/
https://easyexamnotes.com/programming-paradigms-ppl-prof-jayesh-umre/
https://easyexamnotes.com/subprograms-introduction-ppl-prof-jayesh-umre/
https://easyexamnotes.com/phases-of-compiler-ppl-prof-jayesh-umre/
https://easyexamnotes.com/parse-tree-ppl/
https://easyexamnotes.com/influences-on-language-design-ppl-prof-jayesh-umre/
https://easyexamnotes.com/fundamentals-of-subprograms-ppl-prof-jayesh-umre/
https://easyexamnotes.com/ppl-programming-paradigm/
https://easyexamnotes.com/ppl-influences-on-language-design/
https://easyexamnotes.com/language-evaluation-criteria-ppl/
https://easyexamnotes.com/oop-in-c-ppl/
https://easyexamnotes.com/oop-in-c-ppl-2/
https://easyexamnotes.com/oop-in-java-ppl/
https://easyexamnotes.com/ppl-abstraction-encapsulation/
https://easyexamnotes.com/ppl-semaphores/
https://easyexamnotes.com/ppl-introduction-to-4gl/
https://easyexamnotes.com/ppl-variable-initialization/
https://easyexamnotes.com/ppl-conditional-statements/
https://easyexamnotes.com/ppl-array/
https://easyexamnotes.com/ppl-coroutines/
https://easyexamnotes.com/ppl-exception-handler-in-c/
https://easyexamnotes.com/ppl-oop-in-php/
https://easyexamnotes.com/ppl-character-data-type/
https://easyexamnotes.com/ppl-exceptions/
https://easyexamnotes.com/ppl-heap-based-storage-management/
https://easyexamnotes.com/ppl-primitive-data-type/
https://easyexamnotes.com/ppl-data-types/

PPL: Strong Typing

EasyExamNotes.com PPL: Strong Typing

Programming Environments | PPL33.
Virtual Machine | PPL34.
PPL: Local referencing environments35.
Generic Subprograms36.
Local referencing environments | PPL | Prof. Jayesh Umre37.
Generic Subprograms | PPL | Prof. Jayesh Umre38.
PPL: Java Threads39.
PPL: Loops40.
PPL: Exception Handling41.
PPL: C# Threads42.
Pointer & Reference Type | PPL43.
Scope and lifetime of variable44.
Design issues for functions45.
Parameter passing methods46.
Fundamentals of sub-programs47.
Subprograms48.
Design issues of subprogram49.
Garbage Collection50.
Issues in Language Translation51.
PPL Previous years solved papers52.
Type Checking | PPL | Prof. Jayesh Umre53.
PPL RGPV May 2018 solved paper discussion| Prof. Jayesh Umre54.
PPL Viva Voce55.
PPL RGPV June 2017 Solved paper | Prof. Jayesh Umre56.
Concurrency57.
Basic elements of Prolog58.
Introduction and overview of Logic programming59.

https://easyexamnotes.com/ppl-programming-environments/
https://easyexamnotes.com/virtual-machine/
https://easyexamnotes.com/ppl-local-referencing-environments/
https://easyexamnotes.com/generic-subprograms/
https://easyexamnotes.com/local-referencing-environments-ppl-prof-jayesh-umre/
https://easyexamnotes.com/generic-subprograms-ppl-prof-jayesh-umre/
https://easyexamnotes.com/ppl-java-threads/
https://easyexamnotes.com/ppl-loops/
https://easyexamnotes.com/ppl-exception-handling/
https://easyexamnotes.com/ppl-c-threads/
https://easyexamnotes.com/ppl-pointer-reference-type/
https://easyexamnotes.com/scope-and-lifetime-of-variable/
https://easyexamnotes.com/design-issues-for-functions/
https://easyexamnotes.com/parameter-passing-methods/
https://easyexamnotes.com/fundamentals-of-sub-programs/
https://easyexamnotes.com/subprograms/
https://easyexamnotes.com/design-issues-of-subprogram/
https://easyexamnotes.com/garbage-collection/
https://easyexamnotes.com/issues-in-language-translation/
https://easyexamnotes.com/ppl-previous-years-solved-papers/
https://easyexamnotes.com/type-checking-ppl-prof-jayesh-umre/
https://easyexamnotes.com/ppl-rgpv-may-2018-solved-paper-discussion-prof-jayesh-umre/
https://easyexamnotes.com/ppl-viva-voce/
https://easyexamnotes.com/ppl-rgpv-june-2017-solved-paper-prof-jayesh-umre/
https://easyexamnotes.com/concurrency/
https://easyexamnotes.com/basic-elements-of-prolog/
https://easyexamnotes.com/introduction-and-overview-of-logic/

PPL: Strong Typing

EasyExamNotes.com PPL: Strong Typing

Application of Logic programming60.
PPL: Influences on Language Design61.
Language Evaluation Criteria PPL62.
PPL: Sequence Control & Expression63.
PPL: Programming Environments64.
PPL: Virtual Machine65.
PPL: Programming Paradigm66.
PPL: Pointer & Reference Type67.
try-catch block in C++68.

https://easyexamnotes.com/applications-of-logic-programming/
https://easyexamnotes.com/ppl-influences-on-language-design-2/
https://easyexamnotes.com/language-evaluation-criteria-ppl-2/
https://easyexamnotes.com/ppl-sequence-control-expression-2/
https://easyexamnotes.com/ppl-programming-environments-2/
https://easyexamnotes.com/ppl-virtual-machine/
https://easyexamnotes.com/ppl-programming-paradigm-2/
https://easyexamnotes.com/ppl-pointer-reference-type-2/
https://easyexamnotes.com/try-catch-block-in-c/

