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Strong Typing

A strongly-typed programming language is one in which variable type is defined. (such as
integer, character, hexadecimal, packed decimal, and so forth).

If we specify a particular type to our data, the compiler will consider the data as the specified
type and no other type.

An example of arithmetic operation in strongly typed language that will generate an error:
int addition = 10 + “10”;
Here, a string type cannot be added with an integer type.

Strong typed language minimize errors while running the program because most of the errors
will have been corrected before running the program.

Some examples of strongly typed languages are C and Java.

Viva Voce on Strong Typing

Q1. What is strong type language?
Ans. A strongly-typed programming language is one in which each type of data (such as
integer, character, hexadecimal, packed decimal, and so forth) is predefined as part of the
programming language and all constants or variables defined for a given program must be
described with one of the data types.

Q2. Is strong type language predefined part of language?
Ans. Yes.
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Q3. In Strongly typed language errors are maximize or minimize?
Ans. Minimize.

Q4. In this Strongly typed language are slower / faster ?
Ans. It is faster.

Q5. Write some examples of strong typed language?
Ans. SQL, C , Java.

Q6. A language is strongly typed if there are compile-time or run-time checks for what?
Ans. it check the type constraint violations. If no checking is done, it is weakly typed.

Q7. What is the rule of strong typed language?
Ans. Generally, a strongly typed language has stricter typing rules at compile time, which
implies that errors and exceptions are more likely to happen during compilation.

Q8. A language is strongly typed if the type of its data objects is fixed or not?
Ans. Yes, A language is strongly typed if the type of its data objects is fixed.

Q9. A language is weakly typed if the type of its data objects is changeable or not?
Ans. If the type of a datum can change.
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