OSI Model	TCP/IP Model
Consists of seven layers: Physical, Data Link, Network, Transport, Session, Presentation, and Application.	Consists of four layers: Network Interface, Internet, Transport, and Application.
Provides a more detailed and comprehensive framework for network communication.	Offers a simpler and more practical approach, closely reflecting real-world protocols.
Layers are well-defined and distinct, with specific functionalities.	Layers are not as rigidly defined, and protocols can span multiple layers.
Encapsulation occurs at each layer, with data being encapsulated into protocol data units (PDUs) specific to each layer.	Encapsulation is less emphasized, and data is encapsulated primarily into packets.
The model is more theoretical and serves as a reference model for understanding networking concepts.	The model is widely implemented and forms the basis of the Internet and modern networking.
Was developed before the TCP/IP suite and does not directly correspond to the protocols used in practical networking.	Reflects the actual protocols and technologies used on the Internet and interconnected networks.
Not all network protocols and technologies strictly adhere to the OSI model.	The TCP/IP model is widely implemented and followed by most networking technologies.
Provides a more detailed and layered approach to network communication, making it easier to understand and troubleshoot.	Offers a more streamlined and practical approach, making it simpler to implement and manage networks.

Related Posts:

- 1. What is computer network
- 2. Data Link Layer

- 3. Framing
- 4. Byte count framing method
- 5. Flag bytes with byte stuffing framing method
- 6. Flag bits with bit stuffing framing method
- 7. Physical layer coding violations framing method
- 8. Error Control in Data link layer
- 9. Stop and Wait
- 10. Sliding Window Protocol
- 11. One bit sliding window protocol
- 12. A Protocol Using Go-Back-N
- 13. Selective repeat protocol
- 14. Net 10
- 15. Net 9
- 16. Net 47
- 17. Net 43
- 18. TCP/IP Reference Model
- 19. OSI Reference Model
- 20. Computer Networks Introduction
- 21. Types of Computer Networks
- 22. Network Architectures
- 23. Computer Network Topologies
- 24. LAN and WAN Protocols
- 25. Network Address
- 26. IP Addresses
- 27. Class Full Addressing
- 28. Networking Media
- 29. Networking Devices

- 30. Structured cabling
- 31. Types of connectivities in Computer Networks
- 32. Introduction to Network Operating System(NOS)
- 33. ARP/RARP
- 34. Cooperative Caching