Mealy Machine to Moore Machine Conversion

Mealy machine for an input string of length ' n ',

Transition table for Mealy machine.

PRESENT STATE	NEXT STATE			INPUT $=0$			INPUT $=1$
	STATE	OUTPUT	STATE	OUTPUT			
	Q21	1	Q10	0			
Q10	Q0	1	Q30	0			
Q11	Q0	1	Q30	0			
Q20	Q11	1	Q0	1			
Q21	Q11	1	Q0	1			
Q30	Q31	1	Q20	0			

Q31	Q31	1	Q20	0

In above transition table,
Q0 is associated with output 1

Q1 is associated with output 0 and 1
So, let's Q10 associated with output 0, and Q11 associated with output 1 .

Q2 is associated with output 0 and 1
So, let's Q20 associated with output 0, and Q21 associated with output 1 .

Q3 is associated with output 0 and 1
So, let's Q30 associated with output 0 , and Q31 associated with output 1 .

Transition table for Moore machine.

PRESENT STATE	NEXT STATE		OUTPUT
	INPUT $=0$	INPUT $=1$	
Q0	Q21	Q10	1
Q10	Q0	Q30	0
Q11	Q0	Q30	1
Q20	Q11	Q0	0

Q21	Q11	Q0	1
Q30	Q31	Q20	0
Q31	Q31	Q20	1

Transition diagram for Moore machine

Mealy to Moore conversion Hindi video

Related Posts:

1. Definition of Deterministic Finite Automata
2. Notations for DFA
3. How do a DFA Process Strings?
4. DFA solved examples
5. Definition Non Deterministic Finite Automata
6. Moore machine
7. Mealy Machine
8. Regular Expression Examples
9. Regular expression
10. Arden's Law
11. NFA with \in-Moves
12. NFA with \in to DFA Indirect Method
13. Define Mealy and Moore Machine
14. What is Trap state ?
15. Equivalent of DFA and NFA
16. Properties of transition functions
17. Moore to Mealy machine
18. Diiference between Mealy and Moore machine
19. Pushdown Automata
20. Remove \in transitions from NFA
21. TOC 1
22. Diiference between Mealy and Moore machine
23. RGPV TOC What do you understand by DFA how to represent it
24. What is Regular Expression
25. What is Regular Set in TOC
26. RGPV short note on automata
27. RGPV TOC properties of transition functions
28. RGPV TOC What is Trap state
29. DFA which accept 00 and 11 at the end of a string
30. CFL are not closed under intersection
31. NFA to DFA | RGPV TOC
32. Moore to Mealy \| RGPV TOC PYQ
33. DFA accept even 0 and even 1 |RGPV TOC PYQ
34. Short note on automata | RGPV TOC PYQ
35. DFA ending with 00 start with 0 no epsilon \| RGPV TOC PYQ
36. DFA ending with 101 | RGPV TOC PYQ
37. Construct DFA for a power $n, n>=0 \|$ RGPV TOC
38. Construct FA divisible by 3 | RGPV TOC PYQ
39. Construct DFA equivalent to NFA \| RGPV TOC PYQ
40. RGPV Define Mealy and Moore Machine
41. RGPV TOC Short note on equivalent of DFA and NFA
42. RGPV notes Write short note on NDFA
43. Minimization of DFA
44. Construct NFA without \in
45. CNF from $S->a A D ; A->a B / b A B ; B->b, D->d$.
46. NDFA accepting two consecutive a's or two consecutive b's.
47. Regular expresion to CFG
48. Regular expression to Regular grammar
49. Grammar is ambiguous. $\mathrm{S} \rightarrow \mathrm{aSbS}|\mathrm{bSaS}| \in$
50. leftmost and rightmost derivations
51. Construct Moore machine for Mealy machine
52. RGPV TOC PYQs
53. Introduction to Automata Theory
