
Bootstrapping and Porting

EasyExamNotes.com Bootstrapping and Porting

Bootstrapping

Bootstrapping is used to create compilers and to move them from one machine to another by
modifying the back end.

Definition: Bootstrapping in compiler design refers to the process of developing a compiler
using an existing compiler for the same or a different programming language.

Self-Hosting: The goal of bootstrapping is to create a self-hosting compiler, which is capable
of compiling its own source code. Initially, an initial version of the compiler is created using a
different language or an existing compiler.

Development Iterations: With the initial version, the compiler’s source code is compiled using
itself. The resulting compiled version becomes the new compiler, and subsequent iterations
use this self-compiled version to improve and refine the compiler.

Advantages: Bootstrapping ensures that the compiler is self-sufficient and can independently
compile its own code. It allows for easier maintenance, further development, and evolution of
the compiler over time.

A compiler is characterized by three languages

Source Language (S)1.
Target Language (T)2.
Implementation Language (I) 3.

Bootstrapping and Porting

EasyExamNotes.com Bootstrapping and Porting

Porting

Porting the compiler to the new host computer now only requires that the back end of the
source code be rewritten to generate code for the new machine. This is then compiled using
the old compiler to produce a cross compiler, and the compiler is again recompiled by the
cross compiler to produce a working version for the new machine.

Definition: Porting in compiler design refers to the process of adapting a compiler to run on a
different hardware platform or operating system.

Cross-Compilation: In porting, a compiler that is originally designed for a specific hardware
platform or operating system is modified to support compilation for a different platform or
OS.

Changes and Adaptations: Porting involves making necessary changes and adaptations to the
compiler codebase to handle differences in hardware architectures, system libraries, and
underlying system APIs.

Testing and Validation: After porting, extensive testing and validation are performed to
ensure that the ported compiler functions correctly and produces executable code
compatible with the target platform or operating system.

Platform-specific Optimizations: During the porting process, optimizations can be applied to
make the compiler more efficient and take advantage of specific features or capabilities of

Bootstrapping and Porting

EasyExamNotes.com Bootstrapping and Porting

the target platform.

Cross-Platform Development: Porting enables software developers to write code using a
particular language and compiler and deploy it on various platforms without having to rewrite
the code from scratch.

Related Posts:
Introduction to Compiler1.
Analysis and synthesis model of compilation2.
Lexical Analyzer: Input Buffering3.
Storage Allocation Strategies4.
Type Checking5.
Specification & Recognition of Tokens6.
Front end and back end of the compiler7.
LEX8.
Analysis synthesis model of compilation9.
Data structure in CD10.
Register allocation and assignment11.
Loops in flow graphs12.
Dead code elimination13.
Syntax analysis CFGs14.
L-attribute definition15.
Operator precedence parsing16.
Analysis of syntax directed definition17.
Recursive descent parser18.
Function and operator overloading19.

https://easyexamnotes.com/introduction-to-compiler/
https://easyexamnotes.com/analysis-and-synthesis-model-of/
https://easyexamnotes.com/input-buffering/
https://easyexamnotes.com/storage-allocation-strategies/
https://easyexamnotes.com/type-checking-2/
https://easyexamnotes.com/specification-recognition-of-tokens_4/
https://easyexamnotes.com/front-end-and-back-end-of-compiler/
https://easyexamnotes.com/lex/
https://easyexamnotes.com/analysis-synthesis/
https://easyexamnotes.com/data-structure-in-cd/
https://easyexamnotes.com/register-allocation-and-assignment/
https://easyexamnotes.com/loops-in-flow-graphs/
https://easyexamnotes.com/dead-code-elimination/
https://easyexamnotes.com/cfgs_61/
https://easyexamnotes.com/l-attribute-definition/
https://easyexamnotes.com/operator-precedence-parsing/
https://easyexamnotes.com/analysis-of-syntax-directed-definition/
https://easyexamnotes.com/recursive-descent-parser/
https://easyexamnotes.com/function-and-operator-overloading/

Bootstrapping and Porting

EasyExamNotes.com Bootstrapping and Porting

Storage allocation strategies20.
Equivalence of expression in type checking21.
Storage organization22.
Parameter passing23.
Run time environment24.
Type checking25.
Code generation issue in design of code generator26.
Boolean expression27.
Declaration and assignment in intermediate code generation28.
Code optimization29.
Sources of optimization of basic blocks30.
Loop optimization31.
Global data flow analysis32.
Data flow analysis of structure flow graph (SFG)33.

https://easyexamnotes.com/storage-allocation-strategies-2/
https://easyexamnotes.com/equivalence-of-expression-in-type-checking/
https://easyexamnotes.com/storage-organization/
https://easyexamnotes.com/parameter-passing/
https://easyexamnotes.com/run-time-environment/
https://easyexamnotes.com/type-checking-3/
https://easyexamnotes.com/code-generation-issue-in-design-of-code-generator/
https://easyexamnotes.com/boolean-expression/
https://easyexamnotes.com/declaration-and-assignment-in-intermediate-code-generation/
https://easyexamnotes.com/code-optimization/
https://easyexamnotes.com/sources-of-optimization-of-basic-blocks/
https://easyexamnotes.com/loop-optimization/
https://easyexamnotes.com/global-data-flow-analysis/
https://easyexamnotes.com/data-flow-analysis-of-structure-flow-graph/

