SET

Set is a collection of definite well defined objects.

Set is denoted by capital letter.

For example:

$$A = \{a, b, c, d, e\}$$

BINARY OPERATIONS ON A SET

Let,

G à a non-empty set

$$GXG = \{(a,b): a \in G, b \in G \}.$$

Above line is read as: G cross G equal to (a, b) such that 'a' belongs to 'G', 'b' belongs to 'G'.

Ιf

$$f: GXG = G$$
,

Above line is read as 'f' is such that G cross G is equal to G.

Here 'f' is an operation of 'X' on two groups 'G' and 'G'.

The output of 'GXG' is also a 'G' so this type of operation is known as Binary Operation on a set G.

And,

Operation 'f' on 'G' and 'G' can be denoted as 'GfG', or 'afb' where $(a \in G, b \in G)$.

+, x, etc symbols are used in Binary Operations.

Binary Operations examples:-

1) $a + b \in G$, $\forall a, b \in G$.

Above line is read as 'a' plus 'b' belongs to 'G', for all 'a', 'b' belongs to 'G'.

Here, ∀à for all.

- 2) $a * b = G, \forall a,b \in G.$
- 3) Addition of natural numbers is also a natural number.

Natural number are also known as all non-negative or positive numbers (0,1,2,3,4.....).

If, N à Set of natural numbers

$$A + b \in N$$
, $\forall a, b \in N$.

Above line is read as 'a' plus 'b' belongs to 'N', for all 'a', 'b' \in 'N'.

4) Subtraction is not binary operation on N (natural numbers).

Nà Set of natural numbers.

$$3 - 5 = -2$$
 ∉ N, whereas $3, 5 ∈ N$.

Above line is read as three minus five is not belongs to 'N', whereas three, five belongs to 'N'.

5) Subtraction is binary operation on I (integer numbers).

I -> Set of integer numbers

$$3 - 5 = -2 \in I, \ \forall \ a, b \in I.$$

Related Posts:

- 1. SET
- 2. Mathematical induction
- 3. Relation
- 4. Net 34
- 5. prove that- $AX(B \cap C) = (AXB) \cap (AXC)$
- 6. Prove that-An(BuC) = (AnB) u (AnC)
- 7. prove that $-(A \cap B)X(C \cap D) = (AXC) \cap (BXD)$
- 8. Show that-(PnQ)X(RnS) = (PXR)n(QXS)
- 9. Algebraic structure
- 10. Group
- 11. Show that (..., -4, -3, -2, -1, 0, 1, 2, 3, 4,...) is group
- 12. Show that a*b=b*a
- 13. if a*c = c*a and b*c = c*b, then (a*b)*c = c*(a*b)
- 14. Undirected Graph and Incident Matrix
- 15. Prove the following by using the principle of mathematical induction for all $n \in \mathbb{N}$, $1^3 + 2^3 + 3^3 + ... + n^3 = [n (n + 1)/2]^2$
- 16. Prove that $G = \{-1,1,i,-i\}$ is a group under multiplication.
- 17. Hasse diagram for the "less than or equal to" relation on the set $S = \{0,1,2,3,4,5\}$