Algebraic Structures

G -> a non-empty set.

G with one or more binary operations is known as algebraic structures.

For examples

- 1) (G,) , where " is an binary operation on Set/Group 'G'. Than (G,*) is an algebraic group.
- 2) (N, +), where '+' is an binary operation on Set/Group 'N',set of natural numbers.
- 3) (I, +), where '+' is an binary operation on Set/Group 'I', set of integer numbers.
- 4) (I,), where '-' is an binary operation on Set/Group 'I', set of integer numbers.
- 5) (R, +, *), where ' + ' and ' * ' are two binary operations on Set/Group 'R', set of real numbers.
- 6) (R, +, .)
- 7) (I, +, .) etc.

Properties of an Algebraic Structure

1) Associative and Commutative Laws

$$(a * b)* c = a * (b * c)$$

$$(a * b) = (b * a)$$

2) Identity element and Inverses

a * e = e * a = a, where e à identity element

Left identity element,

$$e * a = a$$
.

Right identity element,

$$a * e = a$$
.

If an binary operation ' \ast ' is not having an identity element, Than,

inverse of an element 'a' in set is 'b'.

$$a * b = b * a = e$$

3) Cancellation Laws

Left cancellation law:

$$a * b = a * c$$
, implies $b = c$ ('a' of both sides get cancelled).

Right cancellation law:

$$b * a = c * a$$
, implies $b = c$ ('a' of both sides get cancelled).