Algebraic Structures G -> a non-empty set. G with one or more binary operations is known as algebraic structures. ### For examples - 1) (G,) , where " is an binary operation on Set/Group 'G'. Than (G,*) is an algebraic group. - 2) (N, +), where '+' is an binary operation on Set/Group 'N',set of natural numbers. - 3) (I, +), where '+' is an binary operation on Set/Group 'I', set of integer numbers. - 4) (I,), where '-' is an binary operation on Set/Group 'I', set of integer numbers. - 5) (R, +, *), where ' + ' and ' * ' are two binary operations on Set/Group 'R', set of real numbers. - 6) (R, +, .) - 7) (I, +, .) etc. # Properties of an Algebraic Structure #### 1) Associative and Commutative Laws $$(a * b)* c = a * (b * c)$$ $$(a * b) = (b * a)$$ ## 2) Identity element and Inverses a * e = e * a = a, where e à identity element Left identity element, $$e * a = a$$. Right identity element, $$a * e = a$$. If an binary operation ' \ast ' is not having an identity element, Than, inverse of an element 'a' in set is 'b'. $$a * b = b * a = e$$ #### 3) Cancellation Laws Left cancellation law: $$a * b = a * c$$, implies $b = c$ ('a' of both sides get cancelled). Right cancellation law: $$b * a = c * a$$, implies $b = c$ ('a' of both sides get cancelled).